Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016.

Identifieur interne : 000543 ( Main/Exploration ); précédent : 000542; suivant : 000544

Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016.

Auteurs : P. Cheng [États-Unis] ; L S Xu ; M N Wang ; D R See ; X M Chen

Source :

RBID : pubmed:25142874

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

This manuscript reports two new genes ( Yr64 and Yr65 ) for effective resistance to stripe rust and usefulness of their flanking SSR markers for marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide and resistance is the best control strategy. Durum wheat accessions PI 331260 and PI 480016 were resistant to all tested Pst races. To transfer the resistance genes to common wheat and map them to wheat chromosomes, both accessions were crossed with the stripe rust-susceptible spring wheat 'Avocet S'. Resistant F3 plants with 42 chromosomes were selected cytologically and by rust phenotype. A single dominant gene for resistance was identified in segregating F4 lines from each cross. F6 populations for each cross were developed from single F5 plants and used for genetic mapping. Different genes from PI 331260 and PI 480016 were mapped to different loci in chromosome 1BS using simple sequence repeat markers. The gene from PI 331260 was flanked by Xgwm413 and Xgdm33 in bin 1BS9-0.84-1.06 at genetic distances of 3.5 and 2.0 cM; and the gene from PI 480016 was flanked by Xgwm18 and Xgwm11 in chromosome bin C-1BS10-0.50 at 1.2 and 2.1 cM, respectively. Chromosomal locations and race and allelism tests indicated that the two genes are different from previously reported stripe rust resistance genes, and therefore are named as Yr64 from PI 331260 and Yr65 from PI 480016. These genes and their flanking markers, and selected common wheat lines with the genes should be valuable for diversifying resistance genes used in breeding wheat cultivars with stripe rust resistance.


DOI: 10.1007/s00122-014-2378-8
PubMed: 25142874


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016.</title>
<author>
<name sortKey="Cheng, P" sort="Cheng, P" uniqKey="Cheng P" first="P" last="Cheng">P. Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, L S" sort="Xu, L S" uniqKey="Xu L" first="L S" last="Xu">L S Xu</name>
</author>
<author>
<name sortKey="Wang, M N" sort="Wang, M N" uniqKey="Wang M" first="M N" last="Wang">M N Wang</name>
</author>
<author>
<name sortKey="See, D R" sort="See, D R" uniqKey="See D" first="D R" last="See">D R See</name>
</author>
<author>
<name sortKey="Chen, X M" sort="Chen, X M" uniqKey="Chen X" first="X M" last="Chen">X M Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25142874</idno>
<idno type="pmid">25142874</idno>
<idno type="doi">10.1007/s00122-014-2378-8</idno>
<idno type="wicri:Area/Main/Corpus">000549</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000549</idno>
<idno type="wicri:Area/Main/Curation">000549</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000549</idno>
<idno type="wicri:Area/Main/Exploration">000549</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016.</title>
<author>
<name sortKey="Cheng, P" sort="Cheng, P" uniqKey="Cheng P" first="P" last="Cheng">P. Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430</wicri:regionArea>
<wicri:noRegion>99164-6430</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, L S" sort="Xu, L S" uniqKey="Xu L" first="L S" last="Xu">L S Xu</name>
</author>
<author>
<name sortKey="Wang, M N" sort="Wang, M N" uniqKey="Wang M" first="M N" last="Wang">M N Wang</name>
</author>
<author>
<name sortKey="See, D R" sort="See, D R" uniqKey="See D" first="D R" last="See">D R See</name>
</author>
<author>
<name sortKey="Chen, X M" sort="Chen, X M" uniqKey="Chen X" first="X M" last="Chen">X M Chen</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="eISSN">1432-2242</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosomes, Plant (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Disease Resistance (genetics)</term>
<term>Genes, Dominant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Polyploidy (MeSH)</term>
<term>Triticum (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Basidiomycota (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chromosomes de plante (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Gènes dominants (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Polyploïdie (MeSH)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Triticum (génétique)</term>
<term>Triticum (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Maladies des plantes</term>
<term>Résistance à la maladie</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Basidiomycota</term>
<term>Chromosome Mapping</term>
<term>Chromosomes, Plant</term>
<term>Genes, Dominant</term>
<term>Genes, Plant</term>
<term>Genetic Markers</term>
<term>Microsatellite Repeats</term>
<term>Phenotype</term>
<term>Polyploidy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basidiomycota</term>
<term>Cartographie chromosomique</term>
<term>Chromosomes de plante</term>
<term>Gènes de plante</term>
<term>Gènes dominants</term>
<term>Marqueurs génétiques</term>
<term>Phénotype</term>
<term>Polyploïdie</term>
<term>Répétitions microsatellites</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>This manuscript reports two new genes ( Yr64 and Yr65 ) for effective resistance to stripe rust and usefulness of their flanking SSR markers for marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide and resistance is the best control strategy. Durum wheat accessions PI 331260 and PI 480016 were resistant to all tested Pst races. To transfer the resistance genes to common wheat and map them to wheat chromosomes, both accessions were crossed with the stripe rust-susceptible spring wheat 'Avocet S'. Resistant F3 plants with 42 chromosomes were selected cytologically and by rust phenotype. A single dominant gene for resistance was identified in segregating F4 lines from each cross. F6 populations for each cross were developed from single F5 plants and used for genetic mapping. Different genes from PI 331260 and PI 480016 were mapped to different loci in chromosome 1BS using simple sequence repeat markers. The gene from PI 331260 was flanked by Xgwm413 and Xgdm33 in bin 1BS9-0.84-1.06 at genetic distances of 3.5 and 2.0 cM; and the gene from PI 480016 was flanked by Xgwm18 and Xgwm11 in chromosome bin C-1BS10-0.50 at 1.2 and 2.1 cM, respectively. Chromosomal locations and race and allelism tests indicated that the two genes are different from previously reported stripe rust resistance genes, and therefore are named as Yr64 from PI 331260 and Yr65 from PI 480016. These genes and their flanking markers, and selected common wheat lines with the genes should be valuable for diversifying resistance genes used in breeding wheat cultivars with stripe rust resistance.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25142874</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2242</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>127</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016.</ArticleTitle>
<Pagination>
<MedlinePgn>2267-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00122-014-2378-8</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="CONCLUSIONS">This manuscript reports two new genes ( Yr64 and Yr65 ) for effective resistance to stripe rust and usefulness of their flanking SSR markers for marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide and resistance is the best control strategy. Durum wheat accessions PI 331260 and PI 480016 were resistant to all tested Pst races. To transfer the resistance genes to common wheat and map them to wheat chromosomes, both accessions were crossed with the stripe rust-susceptible spring wheat 'Avocet S'. Resistant F3 plants with 42 chromosomes were selected cytologically and by rust phenotype. A single dominant gene for resistance was identified in segregating F4 lines from each cross. F6 populations for each cross were developed from single F5 plants and used for genetic mapping. Different genes from PI 331260 and PI 480016 were mapped to different loci in chromosome 1BS using simple sequence repeat markers. The gene from PI 331260 was flanked by Xgwm413 and Xgdm33 in bin 1BS9-0.84-1.06 at genetic distances of 3.5 and 2.0 cM; and the gene from PI 480016 was flanked by Xgwm18 and Xgwm11 in chromosome bin C-1BS10-0.50 at 1.2 and 2.1 cM, respectively. Chromosomal locations and race and allelism tests indicated that the two genes are different from previously reported stripe rust resistance genes, and therefore are named as Yr64 from PI 331260 and Yr65 from PI 480016. These genes and their flanking markers, and selected common wheat lines with the genes should be valuable for diversifying resistance genes used in breeding wheat cultivars with stripe rust resistance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>L S</ForeName>
<Initials>LS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>M N</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>See</LastName>
<ForeName>D R</ForeName>
<Initials>DR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>X M</ForeName>
<Initials>XM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005799" MajorTopicYN="N">Genes, Dominant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="N">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25142874</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-014-2378-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Yi Chuan. 2003 May;25(3):317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15639879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:75-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2004 Mar;4(1):12-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2010 Jun;121(1):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20198466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2013 Oct;126(10):2427-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2012 Sep;125(5):847-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22562146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Feb;116(3):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 1999 Dec;42(6):1050-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10659769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2014 Jun;127(6):1449-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1987 Oct;1(2):174-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3692487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Dec;112(1):97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16208504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2000;109(3):199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 May;114(7):1277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17318493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 May;112(8):1434-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2011 May;101(5):544-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21190424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2013 Feb;126(2):523-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23090143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Aug;149(4):2007-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9691054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jun 01;4(6):e5752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19484121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Oct;109(6):1105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15490101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Feb;106(4):636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12595992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Jan;122(1):189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20838759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Dec 20;14(12):R138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24359668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2014 Apr;127(4):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24487945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e57885</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23526955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Sep;115(5):683-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17634917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Feb;104(2-3):315-320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582703</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, X M" sort="Chen, X M" uniqKey="Chen X" first="X M" last="Chen">X M Chen</name>
<name sortKey="See, D R" sort="See, D R" uniqKey="See D" first="D R" last="See">D R See</name>
<name sortKey="Wang, M N" sort="Wang, M N" uniqKey="Wang M" first="M N" last="Wang">M N Wang</name>
<name sortKey="Xu, L S" sort="Xu, L S" uniqKey="Xu L" first="L S" last="Xu">L S Xu</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Cheng, P" sort="Cheng, P" uniqKey="Cheng P" first="P" last="Cheng">P. Cheng</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000543 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000543 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25142874
   |texte=   Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25142874" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020